
erbium

Stable	Atomic mass*	Mole
isotope		fraction
¹⁶² Er	161.928 778	0.001 39
¹⁶⁴ Er	163.9292	0.016 01
¹⁶⁶ Er	165.930 2931	0.335 03
¹⁶⁷ Er	166.932 0482	0.228 69
¹⁶⁸ Er	167.932 3702	0.269 78
¹⁷⁰ Er	169.935 4643	0.149 10

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope
Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in medicine

1) ¹⁶⁹Er is used in radiation synovectomy, which is a regularly practiced nuclear medicine therapy, on rheumatoid arthritis patients whose condition is resistant to standard methods of treatment. Rheumatoid arthritis is a chronic, inflammatory autoimmune disease of the joint capsule (synovial sac), which is lined with a thin membrane called the synovium, of an individual's moveable joints (synovial joints). In radiation synovectomy, a rheumatoid arthritis patient undergoes a very short range intraarticular injection of small particles that are labeled with β-emitting isotopes, such as ¹⁶⁹Er, which are phagocytized (engulfed) by macrophage-like synoviocytes as well as other phagocytizing inflammatory cells in the

patient's subsynovial connective tissue. Necrosis (tissue death) and the inhabitation of cell proliferation (increase in number of cells) results from the radiation of the synovium, and therefore temporarily halts synovitis (which the condition of when the synovium thickens with inflammation) and improves synovial joint function.

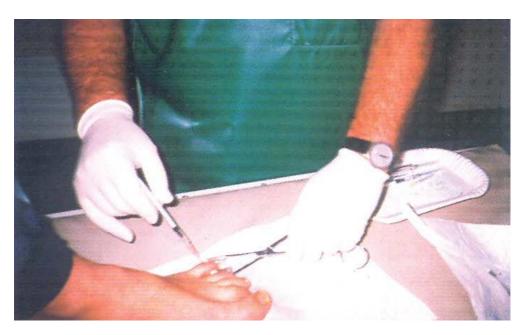


Figure 1: Rheumatoid arthritis patient undergoing radiation synovectomy with ¹⁶⁹Er.

Figure 2: Rheumatoid arthritis patient undergoing radiation synovectomy with radiopharmaceutical ¹⁶⁹Er- citrate colloid.

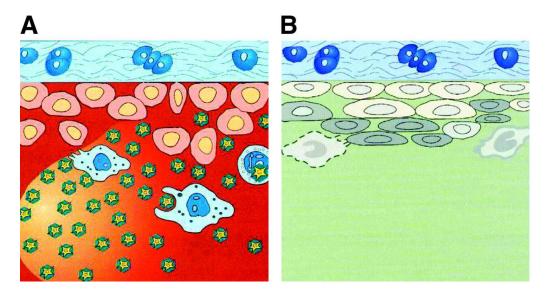


Figure 3: Mechanism of Action of Radiation Synovectomy. (A) This diagram illustrates a patient's inflamed synovium (red), which has been injected with β-emitting particles (¹⁶⁹Er, represented by yellow stars) that are being phagocytized by synoviocytes and other phagocytizing inflammatory cells. The top blue layer is tissue (cartilage), which remains unaffected from the radiation synovectomy. (B) The radiation from radiation synovectomy can cause necrosis (tissue death), sloughing of cells, synovium regression, and/or sclerosis (thickening of tissue). This diagram illustrates what can result from diagram A, the radiation of the synovium, which is cell damage as well as sclerosis of the synovial membrane. The cartilage layer of tissue still remains unaffected.

Isotopes in tracer studies

1) Radiolabeled ¹⁷¹Er tablets have been used to detect and monitor transit through the GI tract of individuals using external scinitgraphy. These tablets are made by using enteric coated tablets that contain small amounts of stable erbium oxide (¹⁷⁰Er) and irradiating them in a small neutron flux in order to produce radioactive labeled ¹⁷¹Er tablets.